Python 预测 NBA 比赛结果
一、 内容介绍
不知道你是否在朋友圈被刷屏过 NBA 的某场比赛进度或者结果?或者你就是一个 NBA 狂热粉,比赛中的每个进球、抢断或是逆转压哨球都能让你热血沸腾。除去观赏精彩的比赛过程,我们也同样好奇比赛的结果会是如何。因此本节课程,将给同学们展示如何使用 NBA 比赛的以往统计数据,判断每个球队的战斗力,及预测某场比赛中的结果。
我们将基于 2015-2016 年的 NBA 常规赛及季后赛的比赛统计数据,预测在当下正在进行的 2016-2017 常规赛每场赛事的结果。
二、 实现原理及步骤
1. 获取 NBA 比赛统计数据
我们将以获取 Team Per Game Stats 表格数据为例,展示如何获取这三项统计数据:
-
进入到 Basketball Reference.com 中,在导航栏中选择Season并选择2015~2016赛季中的Summary:
-
进入到 2015~2016 年的Summary界面后,滑动窗口找到Team Per Game Stats表格,并选择左上方的 Share & more,在其下拉菜单中选择 Get table as CSV (for Excel):
- 复制在界面中生成的 csv 格式数据,并粘贴至一个文本编辑器保存为 csv 文件即可:
2. 数据分析
在这里我们将基于国际象棋比赛,大致地介绍下 Elo 等级划分制度。在上图中 Eduardo 在窗户上写下的公式就是根据Logistic Distribution计算 PK 双方(A 和 B)对各自的胜率期望值计算公式。假设 A 和 B 的当前等级分为 RAR_ARA和 RBR_BRB,则
A 对 B 的胜率期望值为:
B 对 A 的胜率期望值为
如果棋手 A 在比赛中的真实得分 SAS_ASA(胜 1 分,和 0.5 分,负 0 分)和他的胜率期望值 EAE_AEA不同,则他的等级分要根据以下公式进行调整:
在国际象棋中,根据等级分的不同 K 值也会做相应的调整:
• 大于等于2400,K=16
• 2100~2400 分,K=24
• 小于等于2100,K=32
因此我们将会用以表示某场比赛数据的特征向量为(假如 A 与 B 队比赛):[A 队 Elo score, A 队的 T,O 和 M 表统计数据,B 队 Elo score, B 队的 T,O 和 M 表统计数据]
###3.基于数据进行模型训练和预测
我们下载相应的数据文件并解压。
# 获取数据文件
!wget http://labfile.oss.aliyuncs.com/courses/782/data.zip
# 安装 unzip
!apt-get install unzip
# 解压data压缩包并且删除该压缩包
!unzip data.zip
!rm -r data.zip
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
4. 代码实现
首先,引入实验相关模块:
import pandas as pd
import math
import csv
import random
import numpy as np
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
- 1
- 2
- 3
- 4
- 5
- 6
- 7
设置回归训练时所需用到的参数变量:
# 当每支队伍没有elo等级分时,赋予其基础elo等级分
base_elo = 1600
team_elos = {}
team_stats = {}
X = []
y = []
# 存放数据的目录
folder = 'data'
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
在最开始需要初始化数据,从 T、O 和 M 表格中读入数据,去除一些无关数据并将这三个表格通过Team属性列进行连接:
# 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化
def initialize_data(Mstat, Ostat, Tstat):
new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1)
new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1)
new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1)
team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team')
team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team')
return team_stats1.set_index('Team', inplace=False, drop=True)
获取每支队伍的Elo Score等级分函数,当在开始没有等级分时,将其赋予初始base_elo值:
def get_elo(team):
try:
return team_elos[team]
except:
# 当最初没有elo时,给每个队伍最初赋base_elo
team_elos[team] = base_elo
return team_elos[team]
定义计算每支球队的Elo等级分函数:
# 计算每个球队的elo值
def calc_elo(win_team, lose_team):
winner_rank = get_elo(win_team)
loser_rank = get_elo(lose_team)
rank_diff = winner_rank - loser_rank
exp = (rank_diff * -1) / 400
odds = 1 / (1 + math.pow(10, exp))
# 根据rank级别修改K值
if winner_rank < 2100:
k = 32
elif winner_rank >= 2100 and winner_rank < 2400:
k = 24
else:
k = 16
# 更新 rank 数值
new_winner_rank = round(winner_rank + (k * (1 - odds)))
new_loser_rank = round(loser_rank + (k * (0 - odds)))
return new_winner_rank, new_loser_rank
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
基于我们初始好的统计数据,及每支队伍的 Elo score 计算结果,建立对应 2015~2016 年常规赛和季后赛中每场比赛的数据集(在主客场比赛时,我们认为主场作战的队伍更加有优势一点,因此会给主场作战队伍相应加上 100 等级分):
def build_dataSet(all_data):
print("Building data set..")
X = []
skip = 0
for index, row in all_data.iterrows():
Wteam = row['WTeam']
Lteam = row['LTeam']
#获取最初的elo或是每个队伍最初的elo值
team1_elo = get_elo(Wteam)
team2_elo = get_elo(Lteam)
# 给主场比赛的队伍加上100的elo值
if row['WLoc'] == 'H':
team1_elo += 100
else:
team2_elo += 100
# 把elo当为评价每个队伍的第一个特征值
team1_features = [team1_elo]
team2_features = [team2_elo]
# 添加我们从basketball reference.com获得的每个队伍的统计信息
for key, value in team_stats.loc[Wteam].iteritems():
team1_features.append(value)
for key, value in team_stats.loc[Lteam].iteritems():
team2_features.append(value)
# 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧
# 并将对应的0/1赋给y值
if random.random() > 0.5:
X.append(team1_features + team2_features)
y.append(0)
else:
X.append(team2_features + team1_features)
y.append(1)
if skip == 0:
print('X',X)
skip = 1
# 根据这场比赛的数据更新队伍的elo值
new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam)
team_elos[Wteam] = new_winner_rank
team_elos[Lteam] = new_loser_rank
return np.nan_to_num(X), y
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
最终在 main 函数中调用这些数据处理函数,使用 sklearn 的Logistic Regression方法建立回归模型:
if __name__ == '__main__':
Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv')
Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv')
Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv')
team_stats = initialize_data(Mstat, Ostat, Tstat)
result_data = pd.read_csv(folder + '/2015-2016_result.csv')
X, y = build_dataSet(result_data)
# 训练网络模型
print("Fitting on %d game samples.." % len(X))
model = linear_model.LogisticRegression()
model.fit(X, y)
# 利用10折交叉验证计算训练正确率
print("Doing cross-validation..")
print(cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean())
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
最终利用训练好的模型在 16~17 年的常规赛数据中进行预测。
利用模型对一场新的比赛进行胜负判断,并返回其胜利的概率:
def predict_winner(team_1, team_2, model):
features = []
# team 1,客场队伍
features.append(get_elo(team_1))
for key, value in team_stats.loc[team_1].iteritems():
features.append(value)
# team 2,主场队伍
features.append(get_elo(team_2) + 100)
for key, value in team_stats.loc[team_2].iteritems():
features.append(value)
features = np.nan_to_num(features)
return model.predict_proba([features])
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
在 main 函数中调用该函数,并将预测结果输出到16-17Result.csv文件中:
# 利用训练好的model在16-17年的比赛中进行预测
print('Predicting on new schedule..')
schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv')
result = []
for index, row in schedule1617.iterrows():
team1 = row['Vteam']
team2 = row['Hteam']
pred = predict_winner(team1, team2, model)
prob = pred[0][0]
if prob > 0.5:
winner = team1
loser = team2
result.append([winner, loser, prob])
else:
winner = team2
loser = team1
result.append([winner, loser, 1 - prob])
with open('16-17Result.csv', 'w') as f:
writer = csv.writer(f)
writer.writerow(['win', 'lose', 'probability'])
writer.writerows(result)
print('done.')
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
最后,我们实验 Pandas 预览生成预测结果文件16-17Result.csv文件:
pd.read_csv('16-17Result.csv',header=0)
- 1
三、 结果及分析
在本节课程中,我们利用Basketball-reference.com的部分统计数据,计算每支 NBA 比赛队伍的Elo socre,和利用这些基本统计数据评价每支队伍过去的比赛情况,并且根据国际等级划分方法Elo Score对队伍现在的战斗等级进行评分,最终结合这些不同队伍的特征判断在一场比赛中,哪支队伍能够占到优势。但在我们的预测结果中,与以往不同,我们没有给出绝对的正负之分,而是给出胜算较大一方的队伍能够赢另外一方的概率。当然在这里,我们所采用评价一支队伍性能的数据量还太少(只采用了 15~16 年一年的数据),如果想要更加准确、系统的判断,有兴趣的你当然可以从各种统计数据网站中获取到更多年份,更加全面的数据。
四、 源代码
import pandas as pd
import math
import csv
import random
import numpy as np
from sklearn import linear_model
from sklearn.model_selection import cross_val_score
# 当每支队伍没有elo等级分时,赋予其基础elo等级分
base_elo = 1600
team_elos = {}
team_stats = {}
X = []
y = []
# 存放数据的目录
folder = 'data'
# 根据每支队伍的Miscellaneous Opponent,Team统计数据csv文件进行初始化
def initialize_data(Mstat, Ostat, Tstat):
new_Mstat = Mstat.drop(['Rk', 'Arena'], axis=1)
new_Ostat = Ostat.drop(['Rk', 'G', 'MP'], axis=1)
new_Tstat = Tstat.drop(['Rk', 'G', 'MP'], axis=1)
team_stats1 = pd.merge(new_Mstat, new_Ostat, how='left', on='Team')
team_stats1 = pd.merge(team_stats1, new_Tstat, how='left', on='Team')
return team_stats1.set_index('Team', inplace=False, drop=True)
def get_elo(team):
try:
return team_elos[team]
except:
# 当最初没有elo时,给每个队伍最初赋base_elo
team_elos[team] = base_elo
return team_elos[team]
# 计算每个球队的elo值
def calc_elo(win_team, lose_team):
winner_rank = get_elo(win_team)
loser_rank = get_elo(lose_team)
rank_diff = winner_rank - loser_rank
exp = (rank_diff * -1) / 400
odds = 1 / (1 + math.pow(10, exp))
# 根据rank级别修改K值
if winner_rank < 2100:
k = 32
elif winner_rank >= 2100 and winner_rank < 2400:
k = 24
else:
k = 16
# 更新 rank 数值
new_winner_rank = round(winner_rank + (k * (1 - odds)))
new_loser_rank = round(loser_rank + (k * (0 - odds)))
return new_winner_rank, new_loser_rank
def build_dataSet(all_data):
print("Building data set..")
X = []
skip = 0
for index, row in all_data.iterrows():
Wteam = row['WTeam']
Lteam = row['LTeam']
#获取最初的elo或是每个队伍最初的elo值
team1_elo = get_elo(Wteam)
team2_elo = get_elo(Lteam)
# 给主场比赛的队伍加上100的elo值
if row['WLoc'] == 'H':
team1_elo += 100
else:
team2_elo += 100
# 把elo当为评价每个队伍的第一个特征值
team1_features = [team1_elo]
team2_features = [team2_elo]
# 添加我们从basketball reference.com获得的每个队伍的统计信息
for key, value in team_stats.loc[Wteam].iteritems():
team1_features.append(value)
for key, value in team_stats.loc[Lteam].iteritems():
team2_features.append(value)
# 将两支队伍的特征值随机的分配在每场比赛数据的左右两侧
# 并将对应的0/1赋给y值
if random.random() > 0.5:
X.append(team1_features + team2_features)
y.append(0)
else:
X.append(team2_features + team1_features)
y.append(1)
if skip == 0:
print('X',X)
skip = 1
# 根据这场比赛的数据更新队伍的elo值
new_winner_rank, new_loser_rank = calc_elo(Wteam, Lteam)
team_elos[Wteam] = new_winner_rank
team_elos[Lteam] = new_loser_rank
return np.nan_to_num(X), y
if __name__ == '__main__':
Mstat = pd.read_csv(folder + '/15-16Miscellaneous_Stat.csv')
Ostat = pd.read_csv(folder + '/15-16Opponent_Per_Game_Stat.csv')
Tstat = pd.read_csv(folder + '/15-16Team_Per_Game_Stat.csv')
team_stats = initialize_data(Mstat, Ostat, Tstat)
result_data = pd.read_csv(folder + '/2015-2016_result.csv')
X, y = build_dataSet(result_data)
# 训练网络模型
print("Fitting on %d game samples.." % len(X))
model = linear_model.LogisticRegression()
model.fit(X, y)
# 利用10折交叉验证计算训练正确率
print("Doing cross-validation..")
print(cross_val_score(model, X, y, cv = 10, scoring='accuracy', n_jobs=-1).mean())
def predict_winner(team_1, team_2, model):
features = []
# team 1,客场队伍
features.append(get_elo(team_1))
for key, value in team_stats.loc[team_1].iteritems():
features.append(value)
# team 2,主场队伍
features.append(get_elo(team_2) + 100)
for key, value in team_stats.loc[team_2].iteritems():
features.append(value)
features = np.nan_to_num(features)
return model.predict_proba([features])
# 利用训练好的model在16-17年的比赛中进行预测
print('Predicting on new schedule..')
schedule1617 = pd.read_csv(folder + '/16-17Schedule.csv')
result = []
for index, row in schedule1617.iterrows():
team1 = row['Vteam']
team2 = row['Hteam']
pred = predict_winner(team1, team2, model)
prob = pred[0][0]
if prob > 0.5:
winner = team1
loser = team2
result.append([winner, loser, prob])
else:
winner = team2
loser = team1
result.append([winner, loser, 1 - prob])
with open('16-17Result.csv', 'w') as f:
writer = csv.writer(f)
writer.writerow(['win', 'lose', 'probability'])
writer.writerows(result)
print('done.')
pd.read_csv('16-17Result.csv', header=0)
- 1
- 2
- 3
- 4
- 5
- 6
- 7
- 8
- 9
- 10
- 11
- 12
- 13
- 14
- 15
- 16
- 17
- 18
- 19
- 20
- 21
- 22
- 23
- 24
- 25
- 26
- 27
- 28
- 29
- 30
- 31
- 32
- 33
- 34
- 35
- 36
- 37
- 38
- 39
- 40
- 41
- 42
- 43
- 44
- 45
- 46
- 47
- 48
- 49
- 50
- 51
- 52
- 53
- 54
- 55
- 56
- 57
- 58
- 59
- 60
- 61
- 62
- 63
- 64
- 65
- 66
- 67
- 68
- 69
- 70
- 71
- 72
- 73
- 74
- 75
- 76
- 77
- 78
- 79
- 80
- 81
- 82
- 83
- 84
- 85
- 86
- 87
- 88
- 89
- 90
- 91
- 92
- 93
- 94
- 95
- 96
- 97
- 98
- 99
- 100
- 101
- 102
- 103
- 104
- 105
- 106
- 107
- 108
- 109
- 110
- 111
- 112
- 113
- 114
- 115
- 116
- 117
- 118
- 119
- 120
- 121
- 122
- 123
- 124
- 125
- 126
- 127
- 128
- 129
- 130
- 131
- 132
- 133
- 134
- 135
- 136
- 137
- 138
- 139
- 140
- 141
- 142
- 143
- 144
- 145
- 146
- 147
- 148
- 149
- 150
- 151
- 152
- 153
- 154
- 155
- 156
- 157
- 158
- 159
- 160
- 161
- 162
- 163
- 164
- 165
- 166
- 167
- 168
- 169