1.在进行
gdb python
r XX.py
where
调试时,报出以下错误:
1)每次运行都开38个线程,是否是线程超载[New Thread 0x7ffff2fd2700 (LWP 7415)]
[New Thread0x7ffff27d1700 (LWP 7416)]
[New Thread0x7fffeffd0700 (LWP 7417)]
[New Thread0x7fffeb7cf700 (LWP 7418)]
[New Thread0x7fffe8fce700 (LWP 7419)]
[New Thread0x7fffe67cd700 (LWP 7420)]
[New Thread0x7fffe3fcc700 (LWP 7421)]
[New Thread0x7fffe17cb700 (LWP 7422)]
[New Thread0x7fffdefca700 (LWP 7423)]
[New Thread0x7fffdc7c9700 (LWP 7424)]
[New Thread0x7fffd9fc8700 (LWP 7425)]
[New Thread0x7fffd77c7700 (LWP 7426)]
[New Thread0x7fffd4fc6700 (LWP 7427)]
[New Thread0x7fffd27c5700 (LWP 7428)]
[New Thread0x7fffcffc4700 (LWP 7429)]
[New Thread0x7fffcd7c3700 (LWP 7430)]
[New Thread0x7fffcafc2700 (LWP 7431)]
[New Thread0x7fffc87c1700 (LWP 7432)]
[New Thread0x7fffc5fc0700 (LWP 7433)]
[New Thread0x7fffc37bf700 (LWP 7434)]
[New Thread0x7fffc0fbe700 (LWP 7435)]
[New Thread0x7fffbe7bd700 (LWP 7436)]
[New Thread0x7fffbbfbc700 (LWP 7437)]
[New Thread0x7fffb97bb700 (LWP 7438)]
[New Thread0x7fffb6fba700 (LWP 7439)]
[New Thread0x7fffb47b9700 (LWP 7440)]
[New Thread0x7fffb1fb8700 (LWP 7441)]
[New Thread0x7fffaf7b7700 (LWP 7442)]
[New Thread0x7fffacfb6700 (LWP 7443)]
[New Thread0x7fffaa7b5700 (LWP 7444)]
[New Thread0x7fffa7fb4700 (LWP 7445)]
[New Thread0x7fffa57b3700 (LWP 7446)]
[New Thread0x7fffa2fb2700 (LWP 7447)]
[New Thread0x7fffa07b1700 (LWP 7448)]
[New Thread0x7fff9dfb0700 (LWP 7449)]
[New Thread0x7fff9b7af700 (LWP 7450)]
[New Thread0x7fff98fae700 (LWP 7451)]
[New Thread0x7fff967ad700 (LWP 7452)]
[New Thread0x7fff93fac700 (LWP 7453)]
2)现在报出:
ERROR (theano.gpuarray): Could notinitialize pygpu, support disabled
。。。
File”pygpu/gpuarray.pyx”, line 658, inpygpu.gpuarray.init
File”pygpu/gpuarray.pyx”, line 587, inpygpu.gpuarray.pygpu_init
GpuArrayException: cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal
先不解决这个,先尝试测试一下:
发现,在import keras,也会报上述同样的错误!
conda install mkl
conda install mkl-service#使用以上两句均显示:#All requested packages already installed.
conda install blas
依旧不可以导入keras包。
3)将原有的conda环境删除,又新创建了环境,用conda安装了mkl之后,尝试import keras之后,仍然报错:
Using Theano backend.~/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano.
If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <=v7.
warnings.warn(“Your cuDNN version is more recent than”ERROR (theano.gpuarray): Couldnotinitialize pygpu, support disabled
Traceback (most recent call last):
File”~/lib/python2.7/site-packages/theano/gpuarray/__init__.py”, line 227, in use(config.device)
File”~/lib/python2.7/site-packages/theano/gpuarray/__init__.py”, line 214, inuse
init_dev(device, preallocate=preallocate)
File”~/lib/python2.7/site-packages/theano/gpuarray/__init__.py”, line 99, ininit_dev**args)
File”pygpu/gpuarray.pyx”, line 658, inpygpu.gpuarray.init
File”pygpu/gpuarray.pyx”, line 587, inpygpu.gpuarray.pygpu_init
GpuArrayException: cuDeviceGet: CUDA_ERROR_INVALID_DEVICE: invalid device ordinal
在我的.theanorc配置文件中,是这么写的:
[global]
floatX=float32
device=cuda1
尝试去掉cuda编号?居然成功了!
Using Theano backend.~/.conda/envs/xhs/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano.
If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <=v7.
warnings.warn(“Your cuDNN version is more recent than”Using cuDNN version7201on context None
Mapped name None to device cuda: GeForce GTX1080 Ti (0000:03:00.0)
接下来尝试解决 上述的用户警告。
由于theano已经是1.0.4最新版本,无法再进行更新,只能尝试将cuDNN版本降级。
但是使用conda list查看所有安装的包:
cudnn 6.0.21 cuda8.0_0 https://mirrors.tuna.tsinghua.edu.cn/a
#尝试此命令查看pygpu是否可用
DEVICE=”cuda” python -c “import pygpu; pygpu.test()”
此帮助里说,如果不是使用多个GPU可以忽略test_collectives error。
#尝试以下,
python test_gpu.py~/.conda/envs/xhs/lib/python2.7/site-packages/theano/gpuarray/dnn.py:184: UserWarning: Your cuDNN version is more recent than Theano. If you encounter problems, try updating Theano or downgrading cuDNN to a version >= v5 and <=v7.
warnings.warn(“Your cuDNN version is more recent than”Using cuDNN version7201on context None
Mapped name None to device cuda: GeForce GTX1080 Ti (0000:03:00.0)
[GpuElemwise{exp,no_inplace}((float32, vector)>), HostFromGpu(gpuarray)(GpuElemwise{exp,no_inplace}.0)]
Looping1000 times took 0.192847seconds
Resultis [1.2317803 1.6187935 1.5227807 … 2.2077181 2.2996776 1.623233]
Used the gpu
发现其使用的cudnn版本是7.2,明明是6.0但是却调用了7.2?
查看cuda的版本信息发现:
nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c)2005-2017NVIDIA Corporation
Built on Fri_Sep__1_21:08:03_CDT_2017
Cuda compilation tools, release9.0, V9.0.176
//发现安装cuda简直十分麻烦,所以下尝试一下运行程序。
Starting epoch 0…
段错误 (核心已转储)
#查看分配占空间的大小
ulimit -a#显示
stack size (kbytes, -s) 8192
也就仅仅8M大小,实在是太小了。
改为ulimit -s 102400,仍旧段错误。
试图将其调整为更大或者unlimit时,报错:
-bash: ulimit: stack size: 无法修改 limit 值: 不允许的操作
#使用sudo提示如下:
sudo: ulimit:找不到命令
在limit.conf下加了
#* soft stack unlimited
再使用ulimit -s unlimited就可以用了,但是运行程序发现仍是段错误,继续修改
#max locked memory (kbytes, -l) 64#尝试修改maxloc但是同样的方法不起作用
——————
终于解决了,在github上keras项目下发布的issue中找到了:
由于本机上的CUDA版本为9,所以又根据教程安装了CUDA8版本,以及cuDNN6.0版本,之后就可以了!!!
就是由于CUDA9不适合theano1.0!!!所以必须将版本,降版本之后就没有上述的warning了,就可以成功跑theano后端的keras代码了。